A space-time parallel solver for the three-dimensional heat equation
نویسندگان
چکیده
The paper presents a combination of the time-parallel “parallel full approximation scheme in space and time” (PFASST) with a parallel multigrid method (PMG) in space, resulting in a mesh-based solver for the three-dimensional heat equation with a uniquely high degree of efficient concurrency. Parallel scaling tests are reported on the Cray XE6 machine “Monte Rosa” on up to 16,384 cores and on the IBM Blue Gene/Q system “JUQUEEN” on up to 65,536 cores. The efficacy of the combined spatialand temporal parallelization is shown by demonstrating that using PFASST in addition to PMG significantly extends the strong-scaling limit. Implications of using spatial coarsening strategies in PFASST’s multi-level hierarchy in large-scale parallel simulations are discussed.
منابع مشابه
NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملOpenMP-Based PCG Solver for Three-Dimensional Heat Equation
As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, th...
متن کاملAn Efficient One Dimensional Parabolic Equation Solver using Parallel Computing
This paper will discuss the heat equation or as known as parabolic equation by Jacobi, Gauss Seidel and Alternating Direct Implicit (ADI) methods with the implementation of parallel computing on it. The numerical method is emphasized as platform to discretize the one dimensional heat equation. The result of three types of numerical methods will be presented graphically. The parallel algorithm i...
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کامل